柑橘黄酮调控脂质代谢研究进展

贾胜, 高志伟, 陈小宇, 李鲜

中国药学杂志 ›› 2016, Vol. 51 ›› Issue (1) : 1-5.

PDF(838 KB)
PDF(838 KB)
中国药学杂志 ›› 2016, Vol. 51 ›› Issue (1) : 1-5. DOI: 10.11669/cpj.2016.01.001
综述

柑橘黄酮调控脂质代谢研究进展

  • 贾胜1, 高志伟2, 陈小宇2, 李鲜1,*
作者信息 +

Reseach Progress of Regulation of Lipid Metabolism by Citrus Flavonoids

  • JIA Sheng1, GAO Zhi-wei2, CHEN Xiao-yu2, LI Xian1,*
Author information +
文章历史 +

摘要

笔者综述了柑橘黄酮类化合物在调控脂质代谢方面的研究进展。依据近年来研究文献,进行分析、归纳和总结。柑橘黄酮主要包括黄烷酮和多甲氧基黄酮等,柑橘提取物或黄酮单体可调控动物体内或细胞脂质代谢,预防动脉粥样硬化。研究表明,柑橘黄酮调控脂质代谢的作用与黄酮种类、剂量、周期和研究模型等因素有关。柑橘黄酮在调控脂质代谢方面有广阔应用前景,筛选和研究更多种类的柑橘黄酮,具有重要的理论与应用价值。

Abstract

To summarize the research progress of the regulation of lipid metabolism by citrus flavonoids. Recent research articles were analyzed and summarized. Citrus flavonoids are mainly flavanones and polymethoxyflavones, and they can regulate lipid metabolism and prevent atherosclerosis in vitro and in vivo. Factors such as different flavonoid profiles, dosage, time, and experimental models all affect the effectiveness. Citrus flavonoids have great application potentials in regulation of lipid metabolism in vivo, and it has both theoretical and practical significance to screen and study citrus flavonoids.

关键词

柑橘黄酮 / 脂质代谢 / 动脉粥样硬化

Key words

citrus flavonoid / lipid metabolism / atherosclerosis

引用本文

导出引用
贾胜, 高志伟, 陈小宇, 李鲜. 柑橘黄酮调控脂质代谢研究进展[J]. 中国药学杂志, 2016, 51(1): 1-5 https://doi.org/10.11669/cpj.2016.01.001
JIA Sheng, GAO Zhi-wei, CHEN Xiao-yu, LI Xian. Reseach Progress of Regulation of Lipid Metabolism by Citrus Flavonoids[J]. Chinese Pharmaceutical Journal, 2016, 51(1): 1-5 https://doi.org/10.11669/cpj.2016.01.001
中图分类号: R284   

参考文献

[1] LUSIS A J. Atherosclerosis. Nature, 2000, 407(6801): 233-241.
[2] NISSEN S E. Atherosclerosis in 2010: New therapeutic insights. Nat Rev Cardiol, 2011, 8(2): 70-72.
[3] HEVENER A L, REICHART D, OLEFSKY J. Exercise and thiazolidinedione therapy normalize insulin action in the obese Zucker fatty rat. Diabetes, 2000, 49(12): 2154-2159.
[4] REYES-SOFFER G, RONDON-CLAVO C, GINSBERG H N. Combination therapy with statin and fibrate in patients with dyslipidemia associated with insulin resistance, metabolic syndrome and type 2 diabetes mellitus. Exp Opin Pharm, 2011, 12(9): 1429-1438.
[5] ARMITAGE J. The safety of statins in clinical practice. Lancet, 2007, 370(9601):1781-1790.
[6] NISSEN S E, WOLSKI K. Rosiglitazone revisited: An updated meta-analysis of risk for myocardial infarction and cardiovascular mortality.Arch Intern Med, 2010, 170(14): 1191-1201.
[7] TRIPOLI E, LA GUARDIA M, GIAMMANCO S, et al. Citrus flavonoids: Molecular structure, biological activity and nutritional properties:A review. Food Chem, 2007, 104(2): 466-479.
[8] GAYDOU E M, BIANCHINI J P, RANDRIAMIHARISOA R P. Orange and mandarin peel oils differentiation using polymethoxylated flavone composition. J Agric Food Chem, 1987, 35(4): 525-529.
[9] PARK H J, JUNG U J, CHO S J, et al. Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose- and lipid-regulating enzymes in db/db mice. J Nutr Biochem, 2013, 24(2): 419-427.
[10] LIM D W, LEE Y, KIM Y T. Preventive effects of Citrus unshiu peel extracts on bone and lipid metabolism in OVX rats. Molecules, 2014, 19(1): 783-794.
[11] FUKUCHI Y, HIRAMITSU M, OKADA M, et al. Lemon polyphenols suppress diet-induced obesity by upregulation of mRNA levels of the enzymes involved in β-oxidation in mouse white adipose tissue. J Clin Biochem Nutr, 2008, 43(3): 201-209.
[12] DING X, GUO L, ZHANG Y, et al. Extracts of pomelo peels prevent high-fat diet-induced metabolic disorders in C57BL/6 mice through activating the PPARα and GLUT4 pathway. PLoS One, 2013, 8(10): e77915.
[13] ZANG L Q, SHIMADA Y, KAWAJIRI J, et al. Effects of Yuzu(Citrus junos Siebold ex Tanaka) peel on the diet-induced obesity in a zebrafish model. J Funct Foods, 2014, 10: 499-510.doi:10.1016/iiff.2014.08.002.
[14] DING X B, FAN S J, LU Y, et al. Citrus ichangensis peel extract exhibits anti-metabolic disorder effects by the inhibition of PPARγ and LXR signaling in high-fat diet-induced C57BL/6 mouse. Evid Based Comp Alternat Med, 2012, doi:10.1155/2012/678592.
[15] LU Y, XI W P, DING X B, et al. Citrange fruit extracts alleviate obesity-associated metabolic disorder in high-fat diet-induced obese C57BL/6 mouse. Int J Mol Sci, 2013, 14(12): 23736-23750.
[16] TAN S, LI M X, DING X B, et al. Effects of fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice. PLoS One, 2014, 9(4): e93510.
[17] TITTA L, TRINEI M, STENDARDO M, et al. Blood orange juice inhibits fat accumulation in mice. Int J Obes, 2010, 34(3): 578-588.
[18] PU P, GAO D M, MOHAMED S, et al. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Arch Biochem Biophys, 2012, 518(1): 61-70.
[19] YOSHIDA H, WATANABE W, OOMAGARI H, et al. Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. J Nutr Biochem, 2013, 24(7): 1276-1284.
[20] MULVIHILL E E, ALLISTER E M, SUTHERLAND B G, et al. Naringenin prevents dyslipidemia, apolipoprotein B over production, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes, 2009, 58(10): 2198-2210.
[21] ASSINI J M, MULVIHILL E E, SUTHERLAND B G, et al. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr-/- mice. J Lipid Res, 2013, 54(3): 711-724.
[22] SHARMA A K, BHARTI S, OJHA S, et al. Up-regulation of PPARγ, heat shock protein-27 and -72 by naringin attenuates insulin resistance, β-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br J Nutr, 2011, 106(11): 1713-1723.
[23] ALAM M A, KAUTER K, BROWN L. Naringin improves diet-induced cardiovascular dysfunction and obesity in high carbohydrate, high fat diet fed rats. Nutrients, 2013, 5(3): 637-650.
[24] CONSTANTIN R P, DO NASCIMENTO G S, CONSTANTIN R P, et al. Citrus flavanones affect hepatic fatty acid oxidation in rats by acting as prooxidant agents. Biomed Res Int, 2013, doi:10.1155/2013/342973.
[25] JEON S M, PARK Y B, CHOI M S. Antihypercholesterolemic property of naringin alters plasma and tissue lipids, cholesterol-regulating enzymes, fecal sterol and tissue morphology in rabbits. Clin Nutr, 2004, 23(5): 1025-1034.
[26] JUNG U J, LEE M K, PARK Y B, et al. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol, 2006, 38(7): 1134-1145.
[27] CHO K W, KIM Y O, ANDRADE J E, et al. Dietary naringenin increases hepatic peroxisome proliferators-activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats.Eur J Nutr, 2011, 50(1): 81-88.
[28] JUNG U J, KIM H J, LEE J S, et al. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin Nutr, 2003, 22(6): 561-568.
[29] DEMONTY I, LIN Y G, ZEBREGS Y E, et al. The citrus flavonoids hesperidin and naringin do not affect serum cholesterol in moderately hypercholesterolemic men and women. J Nutr, 2010, 140(9): 1615-1620.
[30] HIRAMITSU M, SHIMADA Y, KUROYANAGI J, et al. Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. Sci Rep, 2014,doi:10.1038/srep03708..
[31] JIA S, HU Y, ZHANG W N, et al. Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-Ay mice. Food Funct, 2015,6(3): 878-886.
[32] LAI C S, HO M H, TSAI M L, et al. Suppression of adipogenesis and obesity in high-fat induced mouse model by hydroxylated polymethoxyflavones. J Agric Food Chem, 2013, 61(43): 10320-10328.
[33] GREEN C O, WHEATLEY A O, MCGROWDER D A, et al. Citrus peel polymethoxylated flavones extract modulates liver and heart function parameters in diet induced hypercholesterolemic rats. Food Chem Toxicol, 2013, 51(1): 306-309.
[34] LI R W, THERIAULT A G, AU K, et al. Citrus polymethoxylated flavones improve lipid and glucose homeostasis and modulate adipocytokines in fructose-induced insulin resistant hamsters. Life Sci, 2006, 79(4): 365-373.
[35] MULVIHILL E E, ASSINI J M, LEE J K, et al. Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance. Diabetes, 2011, 60(5): 1446-1457.
[36] LEE Y S, CHA B Y, CHOI S S, et al. Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. J Nutr Biochem, 2013, 24(1): 156-162.
[37] LEE Y S, ASAI M, CHOI S S, et al. Nobiletin prevents body weight gain and bone loss in ovariectomized C57BL/6J mice. Pharmacol Pharm, 2014, 5(10): 959-965.
[38] TSUTSUMI R, YOSHIDA T, NII Y, et al. Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle. Nutr Metab, 2014, 11: 32.
[39] HORIBA T, NISHIMURA I, NAKAI Y, et al. Naringenin chalcone improves adipocyte functions by enhancing adiponectin production. Mol Cell Endocrinol, 2010, 323(2): 208-214.
[40] YU R, KIM C S, KWON B S, et al. Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity, 2006, 14(8): 1353-1362.
[41] HIRAI S, KIM Y I, GOTO T, et al. Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci, 2007, 81(16): 1272-1279.
[42] RICHARD A J, AMINI-VAUGHAN Z, RIBNICKY D M, et al. Naringenin inhibits adipogenesis and reduces insulin sensitivity and adiponectin expression in adipocytes. Evid Based Complement Alternat Med, 2013, 549750,Doi:10.1155/2013/1549750.
[43] KIM G S, PARK H J, WOO J H, et al. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3T3-L1 cells. BMC Complement Altern Med, 2012, 12(1): 31.
[44] KANDA K, NISHI K, KADOTA A, et al. Nobiletin suppresses adipocyte differentiation of 3T3-L1 cells by an insulin and IBMX mixture induction. Biochim Biophys Acta, 2012, 1820(4): 461-468.
[45] KANG S I, SHIN H S, KO H C, et al. Effects of sinensetin on lipid metabolism in mature 3T3-L1 adipocytes. Phytother Res, 2013, 27(1): 131-134.
[46] BORRADAILE N M, DE DREU L E, BARRETT P H, et al. Inhibition of hepatocyte apoB secretion by naringenin: Enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters. J Lipid Res, 2002, 43(9): 1544-1554.
[47] BORRADAILE N M, DE DREU L E, BARRETT P H, et al. Hepatocyte apoB-containing lipoprotein secretion is decreased by the grapefruit flavonoid, naringenin, via inhibition of MTP-mediated microsomal triglyceride accumulation. Biochemistry, 2003, 42(5): 1283-1291.
[48] GOLDWASSER J, COHEN P Y, YANG E, et al. Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: Role of PPARα, PPARγ and LXRα. PLoS One, 2010, 5(8): e12399.
[49] NICHOLS L A, JACKSON D E, MANTHEY J A, et al. Citrus flavonoids repress the mRNA for stearoyl-CoA desaturase, a key enzyme in lipid synthesis and obesity control, in rat primary hepatocytes. Lipids Health Dis, 2011, 10(1): 36.
[50] CHEN J F, GUO R M, YAN H, et al. Naringin inhibits ROS-activated MAPK pathway in high glucose-induced injuries in H9c2 cardiac cells. Basic Clin Pharmacol Toxicol, 2014, 114(4): 293-304.
[51] ST CLAIR R W, YANCEY P G, LEIGHT M A. Macrophage cholesterol balance: A potential site of genetic control of susceptibility to atherosclerosis. Ann N Y Acad Sci, 1995, 748(1): 264-275.
[52] FUHRMAN B, AVIRAM M. Flavonoids protect LDL from oxidation and attenuate atherosclerosis. Curr Opin Lipidol, 2001, 12(1): 41-48.
[53] OAK M H, EL BEDOUI J, SCHINI-KERTH V B. Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem, 2005, 16(1): 1-8.
[54] LIBBY P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol, 2012, 32(9): 2045-2051.
[55] CASSIDY A, RIMM E B, O’REILLY  J, et al. Dietary flavonoids and risk of stroke in women. Stroke, 2012, 43(4): 946-951.
[56] MILENKOVIC D, DEVAL C, DUBRAY C, et al. Hesperidin displays relevant role in the nutrigenomic effect of orange juice on blood leukocytes in human volunteers: A randomized controlled cross-over study. PLoS One, 2011, 6(11): e26669.
[57] BUSCEMI S, ROSAFIO G, ARCOLEO G, et al. Effects of red orange juice intake on endothelial function and inflammatory markers in adult subjects with increased cardiovascular risk. Am J Clin Nutr, 2012, 95(5): 1089-1095.
[58] LEE C H, JEONG T S, CHOI Y K, et al. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun, 2001, 284(3): 681-688.
[59] MULVIHILL E E, ASSINI J M, SUTHERLAND B G, et al. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol, 2010, 30(4): 742-748.
[60] CHANET A, MILENKOVIC D, DEVAL C, et al. Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. J Nutr Biochem, 2012, 23(5): 469-477.
[61] CHOE S C, KIM H S, JEONG T S, et al. Naringin has an antiatherogenic effect with the inhibition of intercellular adhesion molecule-1 in hypercholesterolemic rabbits. J Cardiovasc Pharmacol, 2001, 38(6): 947-955.

基金

“十二五”国家科技计划课题资助项目(2012BAD33B08);中央高校基本科研业务费专项资金资助项目
PDF(838 KB)

100

Accesses

0

Citation

Detail

段落导航
相关文章

/